DYNAMICS OF MASS TRANSFER IN CAPILLARY
POROUS BODIES DURING
CHEMICAL CONVERSION

L. T. Kiseleva UDC 536.248.2

The author analyzes the physicochemical mechanism of mass transfer from a heated capillary
porous body during its thermal decomposition. The penetration parameters of chemical con-
version fronts are determined, also a relation is established between the basic mass transfer
coefficients and the heating rate,

When certain capillary porous bodies are heated to rather high temperatures, there occur chemical
reactions (thermal decomposition) accompanied by liberation or absorption of heat, The rate of a chemical
reaction can be expressed in terms of a power law:

W =kCa?C%,. .., (1)

with Cp, Cp... denoting the concentrations of substances A, B, ..., which participate in the reaction, with
the rate constant k depending on the temperature, and mp, mp, . . . denoting the orders of the reactions
relative to the respective substances. It is usually assumed that chemical conversion occurs simulta~
neously over the entire specimen volume, Under actual conditions, however, it occurs first at the body
surface and then, with time, the conversion zone gradually extends deeper into the body.

For thermophysical engineering calculations it is important to know the rate at which the zone of
chemical conversion extends into the body and how the physicochemical properties of the material as well
as its structure depend on the heating rate, The mass transfer process during chemical conversion due to
heating will be called here the dynamics of mass transfer in capillary porous bodies.

Under the simplest assumption that chemical conversion occurs oniy at its front and that no reaction
takes place before and behind the front, the mechanism of mass transfer dynamies will be analogous to the
freezing mechanism in wet soil — known in thermophysics as the Stefan problem.

In the Stefan problem the phase transformation front (ice formation front) moves deeper into the body.
Its velocity is determined by the law according to which the distance £ of the phase transformation front
from the body surface increases with time, i.e., by the shape of the £ = f(1) curve., In problems with phase
transformation (freezing of water or melting of ice) one usually assumes that the distance £ is a power func-

tion of time T:
E = 617“ s (2)
with 8 denoting the coefficient of penetration of a phase transformation front. The penetration velocity of a
phase transformation front is
ig.. == ﬁn-tn—-l‘ (3)

When n =1, then g3 is equal to the penetration velocity of a phase transformation front.
The relative quantity of liquid transformed into ice (in %) is

My = % W, (@

v
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Fig. 1. Schematic diagram of the test apparatus: 1) analytical
balance, 2) capacitive probe, 3) mechanism for compensating
the loss of weight, 4 and 5) electronic amplifiers, 6) reversible
motor, 7) gear sector, 8) capacitive millivoltmeter, 9) cam, 10)
contactor of the regulating circuit, 11) temperature and weight-
loss charts, 12) electrical furnace with a platinum /rhedium coil,
13) platinum-platinum /rhodium thermocouple, 14) crucible with
test specimen, 15) rod of refractory material, 16) suspended lid,
17) glass wool, 18) autotransformer with voltage-tap changer,
19) electronic relay for furnace protection, 20) mechanism for
recording the time, 21) synchronous motor, 22) rigid feedback
coupling, 23) weight-loss recorder, 24) temperature recorder.

Here R denotes the ratio of volume to surface, i.e., the characteristic dimension of the body.

In the reverse problem (melting of a body) or in the problem of liquid evaporating from a capillary
porous body, when liquid is removed as the evaporation front penetrates into the body (the Stefan problem),
the quantity Mg may represent the relative loss of weight due to evaporation of the liquid.

The law (2) describing the penetration of a phase transformation front does, therefore, determine
the mass transfer dynamics in terms of Eq. (4). The latter applies, however, only to the simplified mech-
anism of phase transformation, i.e., to the "pure» Stefan problem.

We will assume that at the phase transformation front occurs not the complete but only a partial
transition of a substance from one phase to another (e.g., transition of a liquid to vapor). Simultaneously
with the penetration of the phase transformation front into a body at a velocity d¢ /dr there occurs behind
this front a phase transformation of the part of the substance which has not been transformed during the
front passage through it. The mechanism of phase transformation can be described as follows: there exists
a zone of phase transformation bounded on one side by the body surface and on the other side by the phase
transformation front. The latter penetrates into the body according to the law & = 37 and behind it there
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also occurs a phase transformation of a part of the substance, While (4) applies only within certain time
intervals (0 < T < Tgpq), where Tgyq is determined from the relation {ong =R = ﬁ'rgnd (éeng denoting the
maxgimum possible distance from the phase transformation front to the body surface, equal to half the body

thickness R):
fend= ‘/ 5 (5)

in our case the equation of mass transfer should represent the dynamics of mass transfer over the enfire
period of thermal heating (0 < 7 < )., Based on the mechanism of zone penetration, the equation of mass
transfer dynamics will then become
Agr®
M= O
°% TRy + (6)*
with constants Ag and Bg determined from tests. In this case, as T—, we have Mg — Ag, i.e., Mg)max
= Ag. When the substance has transformed completely, Ag should be equal to 100% or Ag =1, depending
on whether the relative mass transfer is measured in percent or in fractions of umity.

It is easy to show the relation between constant Bg and coefficient 8. During the initial period, phase
transformation proceeds essentially by a penetration of the phase transformation front, i.e., with phase
transitions within the phase transformation zone disregarded (Bg > 1), Eq. (6) yields

A
My = 2% 1, 7
®=73 (7

®
and (7) with (4) yield

As _ Ry My)nex

8
* By B, (8

=R

Consequently, the coefficient of penetration of a phase transformation front is inversely proportional to Bg,

We will accept this mechanism of phase transformation in a wet body for analyzing the chemical con-
version in a capillary porous body during its heating., The equation of mass transfer dynamics during
chemical conversion will now become

At
M= Brw (9
or M
Tn
Muwe  Bro (0

with constants A and B determined from tests.

During the heating of a body, then, chemical conversion occurs within a certain.zone: the chemical
conversion zone, It is bounded by the body surface and by the chemical conversion front, the latter pene-
trating into the body according to the law £ = g7, Throughout the entire heating period there occur, simul-
taneously with the penetration of the chemical conversion front, chemical reactions throughout the zone.

*The validity of Eq. (6) will be demonstrated in a sepaﬂrate article,
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( P ) 1;—0“ e : When this zone extends to the center of the body, then conversion will
% occur throughout the body and the process will begin to slow down to
\ a gradual end. During extended heating (7 — «) at the temperature
reached by the body, therefore, conversion of the substance proceeds
incompletely (A < 100%). For a continuation of the process, it is

necessary fo raise the temperature.
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o ~— I can be determined from a test curve M =£(7}., Equation (10) can be
A —0 rewritten as
o — IV

t
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_ \ .« — 7 The constant coefficient B and the constant exponent n in (10)

0

—nlgT. (11
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curve is equal to the exponent n and its intercept on the axis of ordi-
nates is equal to log B/Mmax-

\\ Consequently, the slope of the log (1/M~1/Mpax) = f(logT)

Constant B can be determined from the value of 7,,5,. Indeed,
the mass transfer rate is
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S . Equating the second derivative d“M /d7* to zero, we find

Fig. 3. Curves of (1/M~1/Mpgx) .
= f(7): heating rate 11,2°C /min B= T (13)
(I), 8.32°C /min (II), 4.17°C ‘
/min (III), 3.67°C/min (IV). Formula (13) was also used for calculating B,

Time 7 (min). The dynamics of mass transfer in capillary porous bodies was
studied with the aid of a Stanton balance (built for use in a high-tem-
perature furnace) and by continuously recording the weight-loss curves during the heating of a specimen.
The Stanton apparatus, shown schematically in Fig. 1, consisted of two basic components: an analytical
balance 1 with 2 mechanism for automatically recording the changes of weight, and an electrical-resis-
tance furnace 12 with a programmed temperature recorder. The sensitivity of the analytical balance was
0.0005 g and its maximum weight capacity was 50 g. The vertical electrical resistance furnace 12 was
eylindrical in shape, with a platinum /rhodium coil D = 37.5 mm in diameter and H = 360 mm high, The
programmed témperature recorder made it possible to heat a specimen inside linearly at various rates.

The heating mode was established by an appropriate setting of the cam profile 9, the cam being driven by
a synchronous motor '

The test specimen was placed in a crucible on a special refractory base directly coupled to the rear
arm of the balance beam, and thus inserted info the furnace from underneath into a position on level with
the junction of the thermocouple for measuring the furnace wall temperature. The bottom opening in the
furnace was then covered with ceramic rings leaving a small clearance for the base rod. On top the fur-
nace was carefully insulated with a set of 1ids hanging down and asbestos fibers. The crucible with a
specimen had been balanced into an equilibrium position before the furnace was turned on, and the subse-
quent departure from this equilibrium position during heating was recorded on a strip chart,

In order to eliminate in our analysis any weight change due to oxidation of the original substance,
or due to solid and gaseous products of reactions, as well as thermal side effects, the specimen was
heated in an atmosphere of an inert gas (argon).

Curves representing the mass transfer dynamics in a capillary porous body (relative weight loss as
a function of time) are shown in Fig. 2 for four different modes characterized by heating rates b =11.2,
8.32, 4.17, and 3.67°C /min respectively,

The relative weight loss of material during heating will be denoted by M:

AG .
- 100,
G, - (14)

M=
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Fig. 4. Exponent n and time Ty, o ”
(min) as functions of the heating 4 46 o 0 9o
rate b (°C/min). Fig. 5. Curves of logB = f(logh).

with AG denoting the actual loss of material and G, denoting the initial weight.

It is evident here that the M = (1) curves are S-shaped. Therefore, the mass transfer rate dM /dr
has a maximum and these curves have knees. The time which corresponds to such an extremum will be
denoted by Ty ax, inasmuch as the rate is now (dM /dT)yax. It has been found that these extrema occur at

I _ . I _ . ur . v - s s s
Tinax = 30 min, T . =48 min, Tmax = 58.5 min, and Tomax 78 min respectively, the superscripts here

corresponding to the different heating rates. The quantity A has been defined as the asymptote of the M
= f(1) curves, According to the graph, A = My, = 72% in all four heating modes,

Curves of (1/M—1/My,5) = £(7) are shownin Fig. 3 for these four heating modes. Itisevidenthere
that the test points lie on straight lines and, therefore, the validity of Eq. (9) has been confirmed experi-
mentally. The graphs in Fig. 3 also clearly indicate, however, that the slope changes abruptly. This
means that the exponent n changed during the heating process. When the body was heated at the rate b
=11.2°C/min, for example, the exponent was n = 19.1 during the first 30 min (7 = 30 min) and n = 4.8 after
the first 30 min (7> 30 min), A similar pattern was noted in other heating modes (Fig, 3). One may
agsert, on this basis, that during the initial heating period (0 < 7 < 30 min), with the body temperature
rising from 20 to 350°C, there occurred predominantly one chemical reaction of decomposition and then,
at the body temperature rising from 350 to 750°C (30 min < 7 <), the decomposition was basically due to
another chemical reaction. This transition from one chemical conversion to another is characterized by
a break point on the curve or an abrupt change of the exponent n, It is quite natural that exponent n funda-
mentally characterizes the nature and the mechanism of conversion of a given substance but also that its
magnitude depends on the heating rate b.

This is explained by the faster rise of the body temperature during heating at a higher rate,

Curves of n = f(b) are shown in Fig. 4. It is evident here that exponents n, and n, are, to the first
approximation, linear functions of the heating rate:

fy= 9.2 + 0.86b; ny = 2.45 10,2155, (15)

The empirical formulas (15) are equations of the straight lines in Fig. 4. It appears that the exponent is
approximately four times higher for the first period of the reaction than for the second period (high tem-
perature): n,/n, ~ 4, At b =0 the value of the exponent characterizes the rate of the chemical reaction,
inasmuch as it characterizes the mass transfer rate at an infinitesimally low heating rate,

The constant B in (18), which characterizes the penetration velocity of a chemical conversion front,
is a function of n and T4 55, which in turn are functions of the heating rate. In Fig. 4 is ajso shown the
Tmax = £(b) curve, which indicates that, to the first approximation, Ty ax is a linear function of b:

Tmax = 96~ 6b. (16)

Consequently, the maximum mass transfer rate for the given material is characterized by the time
(T max)e = 96 min. Inasmuch as 7,,,,, and n are functions of the heating rate, coefficient B will be a func-
tion of it too. Curves of log B, = f,(logh) and log B, = fy(logb) are shown in Fig. 5. It is evident here that
the test points fit closely on straight lines which can be described by the following equations:

328



B, =4.10%p11.2; B, = (.41.10%"65, )

Thus, B, is larger than B, by a few orders of magnitude (B, is of the order of 1023-10%, while B, is of the
order of 10%. The relation between coefficients B and the heating rate can then be represented by empiri-
cal equations of the general form

B = By’, ' (18)
where constants B, and p are determined from tests. For our material By = 4-10% and By, = 0.41 - 106,

The coefficient of penetration of chemical conversion front is

M
B=R, 7. 19)
In our case
B,=R,-18. 10-26p~11,2 Pa=R,-176.5.107%—18 (R ~0.125—0,214 cm). (20)

Thus, while a capillary porous body is heated, thermal decomposition is accompanied by chemical
reaction: one occurs during the first period at temperatures up to 350°C and another occurs during the
second period at temperatures from 350 to 750°C. In both cases the chemical conversion front penetrates
into the body according to a power law, with the chemical reactions proceeding within a continuously ex-
panding conversion zone, On the basis of the values of By and ny or (7, 4.y, one can, to the first approxi-
mation, estimate physicochemically the thermal properties of a test material,
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